Излучение абсолютно черного тела. Закон Кирхгофа. Абсолютно черное тело

Абсолютно черное тело

Излучение нагретого чёрного тела в видимом диапазоне

Абсолютно чёрное тело - физическая абстракция, применяемая в термодинамике , тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь . Спектр излучения абсолютно чёрного тела определяется только его температурой .

Наиболее чёрные реальные вещества, например, сажа , поглощают до 99 % падающего излучения (т. е. имеют альбедо , равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце . Термин был введён Густавом Кирхгофом в .

Практическая модель

Модель абсолютно черного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет из себя замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение.

Законы излучения абсолютно чёрного тела

Классический подход

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка , которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия , согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где I (ν)d ν - мощность излучения на единицу площади излучающей поверхности в диапазоне частот от ν до ν + d ν .

Эквивалентно,

,

где u (λ)d λ - мощность излучения на единицу площади излучающей поверхности в диапазоне длин волн от λ до λ + d λ .

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана :

,

где j - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36°C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна , его

Управление образования Кировского района. Министерство общего и среднего образования

Муниципальное Образовательное Учреждение № 204

«Элитарная школа».

Направление научно-техническое.

Предмет физика.

Абсолютно черное тело

Исполнитель: ученик 11 класса Карпов Максим

Руководитель: Бондина Марина Юрьевна

Екатеринбург 2007

Введение стр.2

    Теория черного тела стр.5

    Практическая часть стр.15

Заключение стр.17

Литература стр.18

Введение

В конце XIX в. многие ученые считали, что развитие физики завершилось по следующим причинам:

1. Больше 200 лет существуют законы механики, теория всемирного тяготения, законы сохранения (энергии, импульса, момента импульса, массы и электрического заряда).

2. Разработана МКТ.

3. Подведен прочный фундамент под термодинамику.

4. Сформулирована Максвелловская теория электромагнетизма.

5. Релятивистский закон сохранения энергии – массы.

В конце XIX -- начале XX в. открыты В. Рентгеном - X-лучи (рентгеновские лучи), А. Беккерелем - явление радиоактивности, Дж. Томсоном - электрон. Однако классическая физика не сумела объяснить эти явления.

Теория относительности А. Эйнштейна потребовала коренного пересмотра понятии пространства и времени. Специальные опыты подтвердили справедливость гипотезы Дж. Максвелла об электромагнитной природе света. Можно было предположить, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но это предположение нужно было подтвердить сопоставлением теоретических и экспериментальных данных. Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

С явлением поглощения телами энергии я столкнулся, возвращаясь осенним вечером домой. В тот вечер было сыро, и я с трудом видел дорогу, по которой иду. А когда, через неделю выпал снег, то дорога была хорошо видна. Так я впервые столкнулся с явлением абсолютно черного тела, тела, которого не существует в природе, и меня это заинтересовало. А так как я долго искал интересующий меня материал, собирал его по кусочкам – я решил написать исследовательскую работу, в которой это все будет соединено и выстроено в логическом порядке. Так же для более удобного восприятия теоретической части мной приведены практические примеры опытов, на которых можно пронаблюдать за выше указанным явлением.

Изучая материалы по вопросу об отражении и поглощении световой энергии, я предположил, что абсолютно черное тело – это тело, которое поглощает всю энергию. Однако возможно ли такое на практике? Я думаю, не только мне показался этот вопрос интересным. Поэтому цель моей работы доказать, что излучение электромагнитных волн нагретыми телами обусловлено колебательным движением электронов. Но эта проблема актуальна так как об этом не написано в наших учебниках, мало в каких справочниках можно прочитать про абсолютно черное тело. Для этого я поставил перед собой несколько задач:

      найти как можно больше информации по этой проблеме;

      изучить теорию абсолютно черного тела;

      опытным путем подтвердить теоретические понятия и явления, приведенные в реферате;

Реферат состоит из следующих частей:

    введение;

    теория черного тела;

    практическая часть;

    заключение.

Теория черного тела

1. История изучения вопроса.

Классическая физика не смогла получить разумную формулу для спектральной плотности (эта формула легко проверяется: абсолютно чёрное тело – печь, ставят спектрометр, излучение в спектр разворачивается, и для каждой полоски спектра можно найти энергию в этом интервале длин волн). Классическая физика не смогла не только дать правильное значение функции, она не смогла дать даже разумное значение, а именно, получалось, что эта функция растёт с убыванием длины волны, а это просто бессмысленно, это означает, что любое тело в видимой области излучает, а в низких частотах ещё больше, и полная энергия излучения стремится к бесконечности. Значит, в природе есть явления, которые невозможно описать законами классической физике.

В конце XIX века выявилась несостоятельность попыток создать теорию излучения черного тела на основе законов классической физики. Из законов классической физики следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и понижать температуру до абсолютного нуля. Иными словами. тепловое равновесие между веществом и излучением было невозможно. Но это находилось в противоречии с повседневным опытом.

Более детально это можно пояснить следующим образом. Существует понятие абсолютно черного тела - тела, поглощающего электромагнитное излучение любой длины волны. Спектр его излучения определяется его температурой. В природе абсолютно черных тел нет. Наиболее точно абсолютно черному телу соответствует замкнутое непрозрачное полое тело с отверстием. Любой кусок вещества при нагревании светится и при дальнейшем повышении температуры становится сначала красным, а затем - белым. Цвет от вещества почти не зависит, для абсолютно черного тела он определяется исключительно его температурой. Представим такую замкнутую полость, которая поддерживается при постоянной температуре и которая содержит материальные тела, способные испускать и поглощать излучения. Если температура этих тел в начальный момент отличалась от температуры полости, то со временем система (полость плюс тела) будет стремиться к термодинамическому равновесию, которое характеризуется равновесием между поглощаемой и измеряемой в единицу времени энергией

Г.Кирхгоф установил, что это состояние равновесия характеризуется определенным спектральным распределением плотности энергии излучения, заключенного в полости, а также то, что функция, определяющая спектральное распределение (функция Кирхгофа), зависит от температуры полости и не зависит ни от размеров полости или ее форм, ни от свойств помещенных в нее материальных тел. Так как функция Кирхгофа универсальна, т.е. одинакова для любого черного тела, то возникло предположение, что ее вид определяется какими-то положениями термодинамики и электродинамики. Однако попытки такого рода оказались несостоятельными. Из закона Д.Рэлея следовало, что спектральная плотность энергии излучения должна монотонно возрастать с увеличением частоты, но эксперимент свидетельствовал об ином: вначале спектральная плотность с увеличением частоты возрастала, а затем падала.

Решение проблемы излучения черного тела требовало принципиально нового подхода.

Он был найден М.Планком.

Планк в 1900 г. сформулировал постулат, согласно которому вещество может испускать энергию излучения только конечными порциями, пропорциональными частоте этого излучения. Данная концепция привела к изменению традиционных положений, лежащих в основе классической физики. Существование дискретности действия указывало на взаимосвязь между локализацией объекта в пространстве и времени и его динамическим состоянием. Л. де Бройль подчеркивал, что "с точки зрения классической физики эта связь представляется совершенно необъяснимой и гораздо более непонятной по следствиям, к которым она приводит, чем связь между пространственными переменными и временем, установленная теорией относительности. Квантовой концепции в развитии физики было суждено сыграть огромную роль.

Итак, был найден новый подход к объяснению природы черного тела (в виде квантовой концепции).

2. Поглощательная способность тела.

Для описания процесса поглощения телами излучения введем спектральную поглощательную способность тела. Для этого, выделив узкий интервал частот от до , рассмотрим поток излучения , который падает на поверхность тела. Если при этом часть этого потока поглощается телом, то поглощательную способность тела на частоте определим как безразмерную величину

характеризующую долю падающего на тело излучения частоты , поглощенную телом.

Опыт показывает, что любое реальное тело поглощает излучение различных частот по разному в зависимости от его температуры. Поэтому спектральная поглощательная способность тела является функцией частоты , вид которой изменяется при изменении температуры тела .

По своему определению поглощательная способность тела не может быть больше единицы. При этом тело, у которого поглощательная способность меньше единицы и одинакова по всему диапазону частот, называют серым телом.

Особое место в теории теплового излучения занимает абсолютно черное тело. Так Г.Кирхгоф назвал тело, у которого на всех частотах и при любых температурах поглощательная способность равна единице. Реальное тело всегда отражает часть энергии падающего на него излучения (рис. 1.2). Даже сажа приближается по свойствам к абсолютно черному телу лишь в оптическом диапазоне.

1 - абсолютно черное тело; 2 - серое тело; 3 - реальное тело

Абсолютно черное тело является эталонным телом в теории теплового излучения. И, хотя в природе нет абсолютно черного тела, достаточно просто реализовать модель, для которой поглощательная способность на всех частотах будет пренебрежимо мало отличаться от единицы. Такую модель абсолютно черного тела можно изготовить в виде замкнутой полости (рис. 1.3), снабженной малым отверстием, диаметр которого значительно меньше поперечных размеров полости. При этом полость может иметь практически любую форму и быть изготовленной из любого материала.

Малое отверстие обладает свойством почти полностью поглощать падающее на него излучение, причем с уменьшением размера отверстия его поглощательная способность стремится к единице. Действительно, излучение через отверстие попадает на стенки полости, частично поглощаясь ими. При малых размерах отверстия луч должен претерпеть множество отражений, прежде чем он сможет выйти из отверстия, то есть, формально, отразиться от него. При многократных повторных переотражениях на стенках полости излучение, попавшее в полость, практически полностью поглотится.

Отметим, что если стенки полости поддерживать при некоторой температуре , то отверстие будет излучать, и это излучение с большой степенью точности можно считать излучением абсолютно черного тела, имеющего температуру . Исследуя распределение энергии этого излучения по спектру oC.Ленгли, Э.Прингсгейм, О.Люммер, Ф.Курлбаум и др.), можно экспериментально определить испускательные способности абсолютно черного тела и . Результаты таких экспериментов при различных значениях температуры приведены на рис. 1.4.

Из этих рассуждений следует, что поглощательная способность и цвет тела взаимосвязаны.

3. Закон Кирхгофа.

Закон Кирхгофа. Между испускательными и поглощательными свойствами любого тела должна существовать связь. Ведь в опыте с равновесным тепловым излучением (рис. 1.1) равновесие в системе может установиться только в том случае, если каждое тело будет излучать в единицу времени столько же энергии, сколько оно поглощает. Это означает, что тела, интенсивнее поглощающие излучение какой-либо частоты, будут это излучение интенсивнее и испускать.

Поэтому, в соответствии с таким принципом детального равновесия, отношение испускательной и поглощательной способностей одинаково для всех тел в природе, включая абсолютно черное тело, и при данной температуре является одной и той же универсальной функцией частоты (длины волны).

Этот закон теплового излучения, установленный в 1859 г. Г.Кирхгофом при рассмотрении термодинамических закономерностей равновесных систем с излучением, можно записать в виде соотношения

где индексы 1, 2, 3... соответствуют различным реальным телам.

Из закона Кирхгофа следует, что универсальные функции и есть спектральные испускательные способности и абсолютно черного тела по шкале частот или длин волн, соответственно. Поэтому связь между ними определяется формулой .

Излучение абсолютно черного тела имеет универсальный характер в теории теплового излучения. Реальное тело излучает при любой температуре всегда меньше энергии, чем абсолютно черное тело. Зная испускательную способность абсолютно черного тела (универсальную функцию Кирхгофа) и поглощательную способность реального тела, из закона Кирхгофа можно определить энергию, излучаемую этим телом в любом диапазоне частот или длин волн.

Значит эта энергию, излучаемая телом, определяется как разность между испускательной возможностью черного тела и поглощательной возможностью реального тела.

4. Закон Стефана-Больцмана

Закон Стефана-Больцмана. Экспериментальные (1879 г. Й.Стефан) и теоретические (1884 г. Л.Больцман) исследования позволили доказать важный закон теплового излучения абсолютно черного тела. Этот закон утверждает, что энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры, то есть

Этот закон часто используется в астрономии при определении светимости звезды по её температуре. Для этого необходимо перейти от плотности излучения к наблюдаемой величине - потоку. Формула для интегрального по спектру потока излучения будет выведена в третьей главе.

По современным измерениям постоянная Стефана-Больцмана Вт/(м 2 (К4).

Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (1.7), а имеет вид

Коэффициент в (1.8), всегда меньший единицы, можно назвать интегральной поглощательной способностью тела. Значения , в общем случае зависящие от температуры, известны для многих технически важных материалов. Так, в достаточно широком диапазоне температур для металлов , а для угля и окислов металлов .

Для реальных нечерных тел можно ввести понятие эффективной радиационной температуры , которая определяется как температура абсолютно черного тела, имеющего такую же энергетическую светимость, что и реальное тело. Радиационная температура тела всегда меньше истинной температуры тела . Действительно, для реального тела . Отсюда находим, что , то есть , так как у реальных тел .

Радиационную температуру сильно нагретых раскаленных тел можно определить с помощью радиационного пирометра (рис. 1.5), в котором изображение достаточно удаленного нагретого источника И проецируется с помощью объектива на приемник П так, чтобы изображение излучателя полностью перекрывало приемник. Для оценки энергии излучения, попавшего на приемник, обычно используются металлические или полупроводниковые болометры или термоэлементы. Действие болометров основано на изменении электрического сопротивления металла или полупроводника при изменении температуры, вызванном поглощением падающего потока излучения. Изменение температуры поглощающей поверхности термоэлементов приводит к появлению в них термо-ЭДС.

Показание прибора, подсоединенного к болометру или термоэлементу, оказывается пропорциональным энергии излучения, попавшей на приемник пирометра. Проградуировав предварительно пирометр по излучению эталона абсолютно черного тела при различных температурах, можно по шкале прибора измерять радиационные температуры различных нагретых тел.

Зная интегральную поглощательную способность материала излучателя, можно перевести измеренную радиационную температуру излучателя в его истинную температуру по формуле

В частности, если радиационный пирометр покажет температуру К при наблюдении раскаленной поверхности вольфрамового излучателя (), то ее истинная температура К.

Отсюда можно сделать вывод, что светимость любого тела можно определить по его температуре.

5. Закон смещения Вина

В 1893 г. немецкий физик В.Вин теоретически рассмотрел термодинамический процесс сжатия излучения, заключенного в полости с идеально зеркальными стенками. С учетом изменения частоты излучения за счет эффекта Допплера при отражении от движущегося зеркала Вин пришел к выводу, что испускательная способность абсолютно черного тела должна иметь вид

(1.9)

Здесь - некоторая функция, конкретный вид которой термодинамическими методами установить нельзя.

Переходя в этой формуле Вина от частоты к длине волны, в соответствии с правилом перехода (1.3), получим

(1.10)

Как видно, в выражение для испускательной способности температура входит лишь в виде произведения . Уже это обстоятельство позволяет предсказать некоторые особенности функции . В частности, эта функция достигает максимума на определенной длине волны , которая при изменении температуры тела изменяется так, чтобы выполнялось условие: .

Таким образом, В.Вин сформулировал закон теплового излучения, согласно которому длина волны , на которую приходится максимум испускательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре. Этот закон можно записать в виде

Значение константы в этом законе, полученное из экспериментов, оказалось равным м мК.

Закон Вина называют законом смещения, подчеркивая тем самым, что при повышении температуры абсолютно черного тела положение максимума его испускательной способности смещается в область коротких длин волн. Результаты экспериментов, приведенные на рис. 1.4, подтверждают этот вывод не только качественно, но и количественно, строго в соответствии с формулой (1.11).

Для реальных тел закон Вина выполняется лишь качественно. С ростом температуры любого тела длина волны, вблизи которой тело излучает больше всего энергии, также смещается в сторону коротких длин волн. Это смещение, однако, уже не описывается простой формулой (1.11), которую для излучения реальных тел можно использовать только в качестве оценочной.

Из закона смещения Вина получается, что температура тела и длина волны его испускательной способности взаимосвязаны.

6. Формула Рэлея-Джинса

В диапазоне предельно малых частот,

именуемом областью Рэлея–Джинса, плотность энергии пропорциональна температуре T и квадрату частоты ω:

На рис.2.1.1 эта область помечена РД. Формула Рэлея-Джинса может быть выведена чисто

классическим путём, без привлечения квантовых представлений. Чем выше температура чёрного тела, тем шире диапазон частот, в котором справедлива эта формула. Она объясняется в классической теории, но её нельзя распространять на высокие частоты (пунктирная линия на рис.2.1.1), так как просуммированная по спектру плотность энергии в этом случае бесконечно велика:

Эту особенность закона Рэлея-Джинса называют «ультрафиолетовой катастрофой».

Из формулы Рэлея-Джинса видно, что температура тела не распространяется на высокие частоты.

7. Формула Вина

В диапазоне больших частот (область В на рис.2.1.1) справедлива формула Вина:

Хорошо видно, что правая часть меняется немонотонно. Если частота не слишком велика, то преобладает множитель ω3 и функция Uω возрастает. По мере увеличения частоты рост Uω замедляется, она проходит через максимум, а затем убывает за счёт экспоненциального множителя. Наличие максимума в спектре излучения отличает виновский диапазон от области Рэлея-Джинса.

Чем больше температура тела, тем выше граничная частота, начиная с которой выполняется формула Вина. Величина параметра a в экспоненте правой части зависит от выбора единиц, в которых измеряются температура и частота.

А значит, формула Вина требует привлечения квантовых представлений о природе света.

Таким образом я рассмотрел поставленные перед собой вопросы. Нетрудно заметить, что существующие законы физики XIX в. были поверхностны, они не связывали воедино все характеристики (длина волны, температура, частота и т.д.) физических тел. Все вышеперечисленные законы дополняли друг друга, но для полного понимания данного вопроса необходимо было привлечение квантовых представлений о природе света.

Практическая часть

Как я уже неоднократно говорил, явление абсолютно черного тела на сегодняшний день не существует на практике, во всяком случае мы не можем создать и увидеть его. Однако мы можем провести ряд опытов, которые демонстрируют выше преведенные теоретические выкладки.

Может ли белое быть чернее черного? Начнем с совсем простого наблюдения. Если положить рядом листки белой и черной бумаги и создать в комнате темноту. Ясно, что тогда ни одного листка вы не увидите, то есть оба они будут одинаково черными. Казалось бы, ни при каких условиях белая бумага не может быть чернее черной. И все же это не так. Тело, которое при любой температуре полностью поглощает падающее на него излучение любой частоты, называется абсолютно черным. Понятно, что это - идеализация: в природе абсолютно черных тел нет. Тела, которые мы обычно называем черными (сажа, копоть, черные бархат и бумага и т.д.), на самом деле серые, т.е. они частично поглощают, а частично рассеивают падающий на них свет.

Оказывается, вполне хорошей моделью абсолютно черного тела может служить сферическая полость с небольшим отверстием. Если диаметр отверстия не превышает 1/10 диаметра полости, то (как показывает соответствующий расчет) вошедший в отверстие световой пучок сможет выйти из его обратно лишь после многократных рассеяний или отражений от разных точек стенки полости. Но при каждом "соприкосновении" пучка со стенкой энергия света частично поглощается, так что доля выходящего обратно из отверстия излучения ничтожно мала. Поэтому можно полагать, что отверстие полости практически полностью поглощает свет любой длины волны, как и абсолютно черное тело. А сам прибор для опыта можно сделать, например, так. Из картона нужно склеить коробку размером примерно 100Х100Х100 мм с открывающейся крышкой. Изнутри коробку нужно оклеить белой бумагой, а снаружи - покрасить черной тушью, гуашью или, что еще лучше, оклеить бумагой от фотопакетов. В крышке нужно проделать отверстие диаметром не более 10 мм. Показывая опыт, надо осветить крышку коробки настольной лампой, тогда отверстие будет выглядеть более черным, чем черная крышка.

Для того чтобы просто пронаблюдать явление, можно поступить еще проще (но менее интересно). Нужно взять белую фарфоровую чашку и закрой ее бумажной черной крышкой с небольшим отверстием - эффект будет практически таким же.

Обратите внимание, что если смотреть с улицы на окна в яркий солнечный день, то они кажутся нам темными.

Кстати, профессор Принстонского университета Эрик Роджерс, написавший изданную не только у нас "Физику для любознательных", дал своеобразное "описание" абсолютно черного тела: "Никакая черная краска на собачьей конуре не выглядит чернее открытой для собаки дверцы".

Сняв с двух одинаковых пустых консервных банок наклейки и закоптив или закрасив черной краской одну банку, другую оставив светлой, налив в обе банки горячую воду и посмотрев, в какой из них вода остынет быстрее (опыт можно проводить и в темноте); вы пронаблюдаете явление теплового излучения.

Так же за явлением теплового излучения можно пронаблюдать, смотря за работой комнатного электрического нагревателя, состоящего из накаливаемой спирали и хорошо полированной вогнутой металлической поверхности.

Любопытно, что:

    связь между световыми и тепловыми лучами была известна со времен античности. Более того, слово "фокус" означает на латинском языке "огонь", "очаг", что в применении к вогнутым зеркалам и линзам свидетельствует о первоочередном внимании к концентрации тепловых, а не световых лучей. Среди многих экспериментов XVI-XVIII веков особо выделяется опыт, проведенный Эдмом Мариоттом, в котором порох воспаменялся тепловыми лучами, отраженными вогнутым зеркалом, изготовленным из... льда.

    Уильям Гершель, знаменитый открытием планеты Уран, обнаружив в спектре Солнца невидимые - инфракрасные - лучи, был так поражен, что двадцать лет хранил об этом молчание. А вот в том, что Марс обитаем и населен, он не сомневался...

    после того как спектральный анализ показал наличие в атмосфере Солнца многих химических элементов, в том числе и золота, один банкир сказал Кирхгофу: "Ну и что толку от вашего солнечного золота? Ведь его все равно не доставить на Землю!" Прошло несколько лет, и Кирхгоф получил из Англии золотую медаль и премию наличными деньгами за свои замечательные исследования. Показав эти деньги банкиру, он сказал: "Посмотрите, а мне все-таки удалось, в конце концов, заполучить немного золота с Солнца".

    на могиле Фраунгофера, открывшего темные линии в спектре Солнца и изучавшего спектры планет и звезд, признательные соотечественники воздвигли памятник с надписью "Приблизил звезды".

Приведенные мной практические примеры подтверждают выкладки теоретической части.

Заключение

Я рассмотрел поставленные перед собой вопросы. Нетрудно заметить, что существующие законы физики XIX в. были поверхностны, они не связывали воедино все характеристики (длина волны, температура, частота и т.д.) физических тел. Все вышеперечисленные законы дополняли друг друга, но для полного понимания данного вопроса необходимо было привлечение квантовых представлений о природе света. Создание квантовой теории позволило объяснить многие явления, такие как явление абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн. Также позволило объяснить взаимосвязь поглощательной способности и цвета тела, зависимость светимости тела от его температуры. Впоследствии эти явления были объяснены и классической физикой. Я выполнил цель моей работы – ознакомил с проблемой абсолютно черного тела всех желающих. Для этого я выполнил следующие задачи:

      нашел как можно больше информации по этой проблеме;

      изучил теорию абсолютно черного тела;

      опытным путем подтвердил теоретические понятия и явления, приведенные в реферате;

Для теоретического рассмотрения законов излучений использовали модель абсолютно черного тела, т.е. тела, полностью поглощающего электромагнитные волны любой длины и, соответственно, излучающего все длины электромагнитных волн.

Список использованной литературы:

    Мякишев Г. Я., Физика 11, М., 2000.

    Касьянов В. А., Физика 11, М., 2004.

    Ландсберг Г. С., Элементарный учебник физики том III, М., 1986.

    http://ru.wikipedia.org/wiki/Абсолютно_черное_тело .абсолютно

    Парадоксально. Черная дыра ведет себя, как тело с температурой, равной абсолютному нулю... , потому что с помощью черной дыры... Таким образом, черная дыра излучает как идеальное черное тело (неожиданно реализованное...

Понятие «абсолютно черного тела» было введено немецким ученым-физиком Густавом Кирхгофом в середине XIX века. Необходимость введения такого понятия была связана с развитием теории теплового излучения.

Абсолютно чёрное тело - идеализированное тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах длин волн и ничего не отражающее.

Таким образом, энергия любого падающего излучения полностью передается АЧТ и превращается в его внутреннюю энергию. Одновременно с поглащением АЧТ также излучает электромагнитное излучение и теряет энергию. Причем мощьность этого излучения и его спектральный остав определяются только температурой АЧТ. Именно температура АЧТ определяет сколько излучения оно испускает в инфракрасном, видимом, ультрафиолетовом и др. диапазонах. Поэтому АЧТ, несмотря на свое название, при достаточно высокой температуре будет излучать в видимом диапазоне и визуально иметь цвет. Наше Солнце – вот пример нагретого до температуры 5800°С объекта, при этом близкого по свойствам к АЧТ.

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Чаще всего это замкнутая полость с небольшим входным отверстием. Излучение, попадающее внутрь сквозь это отверстие, после многократных отражений полностью поглощается стенками. Никакая часть попавшего в отверстие излучения не отражается от него обратно - это соответствует определению АЧТ (полное поглащение и отсутствие отражения). При этом полость имеет собственное излучение, соответствующее ее температуре. Поскольку собственное излучение внутренних стенок полости также совершает огромное количество новых поглощений и излучений, то можно сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. Характеристики этого равновесного излучения определяются только температурой полости (АЧТ): суммарная (на всех длинах волн) энергия излучения по закону Стефана-Больцмана, а распределение энергии излучения по длинам волн описывается формулой Планка.

В природе не существует абсолютно черных тел. Есть примеры тел, которые лишь наиболее приближены по своим характеристикам к абсолютно черным. К примеру, сажа способна поглотить до 99 % падающего на нее света. Очевидно, что особенная шероховатость поверхности материала позволяет свести отражения к минимуму. Именно благодаря многократному отражению с последующим поглощением мы видим черными такие объекты, как черный бархат.

Объект очень близкий к АЧТ я однажды встретил на производстве бритвенных лезвий Gillette в Санкт-Петербурге, где мне довелось поработать еще до занятия тепловидением. Классические двухсторонние бритвенные лезвия в технологическом процессе собираются на «ножи» до 3000 лезвий в пачке. Боковая поверхность, состоящая из множества плотно прижатых друг к другу заточенных лезвий, имеет бархатный черный цвет, хотя каждое отдельное стальное лезвие имеет блестящую остро заточенную стальную кромку. Блок лезвий, оставленный на подоконнике в солнечную погоду, мог нагреться до 80°С. Вместе с тем, отдельные лезвия практически не нагревались, так как отражали большую часть излучения. Схожую форму поверхности имеют резьбы на болтах и шпильках, их коэффициент излучения выше, чем на гладкой поверхности. Это свойство часто используется при тепловизионном контроле электрооборудования.

Ученые работают над созданием материалов со свойствами, приближенным к свойствам абсолютно черных тел. Например в оптическом длипазоне достигнуты заначительные результаты. В 2004 году в Англии был разработан сплав из никеля и фосфора, который представлял собой микропористое покрытие и имел коэффициент отражения 0,16–0,18 %. Этот материал был занесен в Книгу рекордов Гиннеса, как самый черный материал в мире. В 2008 году американские ученые установили новый рекорд - выращенная ими тонкая пленка, состоящая из вертикальных углеродных трубочек, практически полностью поглощает излучение, отражая его на 0,045 %. Диаметр такой трубочки - от десяти нанометров и длиной от десяти до нескольких сотен микрометров. Созданный материал имеет рыхлую, бархатистую структуру и шероховатую поверхность.

Каждый инфракрасный прибор проходит калибровку по модели(ям) АЧТ. Точность измерений температуры никогда не может быть лучше, чем точность калибровки. Поэтому качество калибровки очень важно. При калибровке (или поверке) с помощью эталонных излучателей воспроизводятся температуры из всего диапазона измерения тепловизора или пирометра. В практике используются эталонные тепловые излучатели в виде модели абсолютно черного тела следующих типов:

Полостные модели АЧТ. Имеют полость с малым входным отверстием. Температура в полости задается, поддерживается и измеряется с высокой точностьтю. В таких излучателях могут быть воспроизведены высокие температуры.

Протяженные или плоскостные модели АЧТ. Имеют площадку, окрашенную составом с высоким коэффициентом излучения (низким коэффициентом отражения). Температура площадки задается, поддерживается и измеряется с высокой точностьтю. В таких излучателях могут быть воспроизведены низкие отрицательные температуры.

При поиске информации об импортных моделях АЧТ используйте термин «black body». Также важно понимать разницу между проверкой, калибровкой и поверкой тепловизора. Об этих процедурах подробно написано на сайте в разделе о тепловизорах.

Использованы материалы: Википедия; БСЭ; Infrared Training Center (ITC); Fluke Calibration

Абсолютно чёрное тело

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце.

Термин был введён Густавом Кирхгофом в 1862 году.

Практическая модель

Модель абсолютно чёрного тела

Абсолютно чёрных тел в природе не существует (кроме чёрных дыр), поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела

Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию - так называемой ультрафиолетовой катастрофе .

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

где u ν - плотность энергии излучения,

ν - частота излучения,

T - температура излучающего тела,

f - функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана - Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина» называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

где C 1 , C 2 - константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C 1 и C 2 . С учётом этого, второй закон Вина можно записать в виде:

где h - постоянная Планка,

k - постоянная Больцмана,

c - скорость света в вакууме.

Закон Рэлея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны.

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где -мощность излучения на единицу площади излучающей поверхности в единичном интервале частот в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1 ·ср −1).

Эквивалентно,

где - мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·м −1 ·ср −1).

Полная (т.е. испускаемая во всех направлениях) спектральная мощность излучения с единицы поверхности абсолютно чёрного тела описывается этими же формулами с точностью до коэффициента π: ε(ν, T ) = πI (ν, T ), ε(λ, T ) = πu (λ, T ).

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

где - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где - степень черноты (для всех веществ, для абсолютно чёрного тела).

Константу Стефана - Больцмана можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемыультрафиолетовой катастрофы).

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где - температура вкельвинах, а - длина волны с максимальной интенсивностью вметрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна егодавление равно Очень близко по своим свойствам к чернотельному так называемоереликтовое излучение, или космический микроволновой фон - заполняющее Вселеннуюизлучение с температурой около 3 К.

Цветность чернотельного излучения

Цвета даны в сравнении с рассеянным дневным светом. Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Закон излучения Кирхгофа

Закон излучения Кирхгофа ­– физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое телоизлучает энергию по некоторому закону , именуемымизлучательной способностью тела .

Величины имогут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функциясовпадает с излучательной способностью абсолютно чёрного тела, описываемойзаконом Стефана - Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения - куба Лесли.

К концу XIX века ученые, исследуя взаимодействие электромагнитного излучения (в частности, света) с атомами вещества, столкнулись с серьезными проблемами, решить которые удалось только в рамках квантовой механики , которая, во многом, и зародилась благодаря тому, что эти проблемы возникли. Чтобы понять первую и, пожалуй, самую серьезную из этих проблем, представьте себе большой черный ящик с зеркальной внутренней поверхностью, в одной из стенок которого проделана маленькая дырочка. Луч света, проникающий в ящик через микроскопическое отверстие, навсегда остается внутри, бесконечно отражаясь от стенок. Объект, не отражающий света, а полностью поглощающий его, выглядит черным, поэтому его и принято называть черным телом . (Абсолютно чёрное тело — подобно многим другим концептуальным физическим явлениям — объект чисто гипотетический, хотя, например, полая, равномерно разогревающаяся зеркальная изнутри сфера, свет в которую проникает через единственное крохотное отверстие, является хорошим приближением.)

Вам, однако, наверняка доводилось и в реальности видеть достаточно близкие аналоги черного тела. В очаге, например, случается, что несколько поленьев сложатся практически вплотную, а внутри них выгорит довольно большая полость. Снаружи поленья остаются темными и не светятся, в то время как внутри выгоревшей полости накапливаются жар (инфракрасное излучение) и свет, и, прежде чем вырваться наружу, эти лучи многократно отражаются от стен полости. Если заглянуть в щель между такими поленьями, вы увидите яркое желто-оранжевое высокотемпературное свечение и, оттуда на вас буквально полыхнет жаром. Просто лучи на какое-то время оказались пойманными в ловушку между поленьями подобно тому, как свет полностью улавливается и поглощается вышеописанным черным ящиком.

Модель такого черного ящика помогает нам понять, как ведет себя поглощенный черным телом свет, взаимодействуя с атомами его вещества. Тут важно понять, что свет поглощается атомом, тут же испускается им и поглощается другим атомом, снова испускается и поглощается, и так будет происходить до момента достижения состояния равновесного насыщения. При нагревании черного тела до равновесного состояния интенсивность испускания и поглощения лучей внутри черного тела уравниваются: при поглощении некоего количества света определенной частоты одним атомом другой атом где-то внутри одновременно испускает такое же количество света той же частоты. Таким образом, количество поглощенного света каждой частоты внутри черного тела остается неизменной, хотя поглощают и испускают его разные атомы тела.

До этого момента поведение черного тела остается достаточно понятным. Проблемы в рамках классической физики (под «классической» здесь имеется в виду физика до появления квантовой механики) начались при попытках подсчитать энергию излучения, сохраняемую внутри абсолютно черного тела в равновесном состоянии. И скоро выяснились две вещи:

  • чем выше волновая частота лучей, тем больше их накапливается внутри черного тела (то есть, чем короче длины волн исследуемой части спектра волн излучения, тем больше лучей этой части спектра внутри черного тела предсказывает классическая теория);
  • чем выше частота волны, тем большую энергию она несет и, соответственно, тем больше ее сохраняется внутри черного тела.

По совокупности два этих заключения привели к немыслимому результату: энергия излучения внутри черного тела должна быть бесконечной! Эта злая насмешка над законами классической физики была окрещена ультрафиолетовой катастрофой , поскольку высокочастотное излучение лежит в ультрафиолетовой части спектра.

Порядок удалось восстановить немецкому физику Максу Планку (см. Постоянная Планка) — он показал, что проблема снимается, если допустить, что атомы могут поглощать и излучать свет только порциями и только на определенных частотах. (Позже Альберт Эйнштейн обобщил эту идею, введя понятие фотонов — строго определенных порций светового излучения.) По такой схеме многие частоты излучения, предсказываемые классической физикой, просто не могут существовать внутри черного тела, поскольку атомы не способны ни поглощать, ни испускать их; соответственно, эти частоты выпадают из рассмотрения при расчете равновесного излучения внутри черного тела. Оставив только допустимые частоты, Планк предотвратил ультрафиолетовую катастрофу и направил науку по пути верного понимания устройства мира на субатомном уровне. Кроме того, он рассчитал характерное распределение равновесного излучения черного тела по частотам.

Это распределение получило всемирную известность через многие десятилетия после его публикации самим Планком, когда ученые-космологи выяснили, что открытое ими реликтовое микроволновое излучение (см. Большой взрыв) в точности подчиняется распределению Планка по своим спектральным характеристикам и соответствует излучению абсолютно черного тела при температуре около трех градусов выше абсолютного нуля.