Определение длины волны света. Определение длины световой волны с помощью дифракционной решётки

Лабораторная работа №2 (решеба, ответы) по физике 11 класс - Определение световой волны с помощью дифракционной решётки

2. Установите экран на расстоянии L ~ 45-50 см от дифракционной решётки. ИзмерьтеL не менее 5 раз, рассчитайте среднее значение . Данные занесите в таблицу.

5. Рассчитайте средние значения. Данные занесите в таблицу.

6. Рассчитайте период d решётки, запишите его значение в таблицу.

7. По измеренному расстоянию от центра щели в экране до положения красного края спектра и расстоянию от дифракционной решётки до экрана вычислите sin0кр, под которым наблюдается соответствующая полоса спектра.

8. Вычислите длину волны, соответствующую красной границе воспринимаемого глазом спектра.

9. Определите длину волны для фиолетового края спектра.

10. Рассчитайте абсолютные погрешности измерений расстояний L и l.

L = 0.0005 м + 0.0005 м = 0.001 м
l = 0.0005 м + 0.0005 м = 0.001 м

11. Рассчитайте абсолютную и относительную погрешности измерения длин волн.

Ответы на контрольные вопросы

1. Объясните принцип действия дифракционной решётки.

Принцип действия такой же, как и призмы - отклонение проходящего света на определённый угол. Угол зависит от длины волны падающего света. Чем больше длина волны, тем больше угол. Представляет собой систему из одинаковых параллельных щелей в плоском непрозрачном экране.

Нажмите, чтобы увеличить

2. Укажите порядок следования основных цветов в дифракционном спектре?

В дифракционном спектре: фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый и красный.

3. Как изменится дифракционный спектр, если использовать решётку с периодом, в 2 раза большим, чем в вашем опыте? В 2 раза меньшим?

Спектр в общем случае есть частотное распределение. Пространственная частота - величина, обратная периоду. Отсюда очевидно, что увеличение периода вдвое приводит к сжатию спектра, а уменьшение спектра приведёт к растяжению спектра вдвое.

Выводы: дифракционная решётка позволяет очень точно измерить длину световой волны.

Цель работы: Определение длин волн красного, зеленого и фиолетового лучей для четко видимых спектров 1-го и 2-го порядков.

Приборы и принадлежности: Дифракционная решетка, экран, лампа для подсвечивания.

Теоретическое введение

Если пучок параллельных лучей света встречает на своем пути непрозрачное круглое тело или его пропускают через достаточно малое круглое отверстие, то на экране будет замечено светлое или темное пятно в центре чередующихся темных и светлых колец.

Это явление распространения света в область геометрической тени, указывающее на отступление от закона прямолинейности распространения света получило название дифракции света .

Для получения ярких дифракционных спектров применяются дифракционные решет ки. Дифракционная решетка представляет собой плоскую стеклянную пластинку, на которой с помощью делительной машины нанесен ряд параллельных штрихов (в хороших решетках - до 1000 штрихов на миллиметр). Штрихи являются практически непрозрачными для света, т.к. из-за своей шероховатости они в основном рассеивают свет. Промежутки между штрихами свободно пропускают свет и называются щелями.

Совокупность ширины штриха и прозрачного промежутка называется периодом или постоянной решетки . Если обозначить ширину штриха через b , а ширину щели а , то период решетки

Пусть на решетку падают лучи света перпендикулярно плоскости. Свет, проходя через каждую щель, испытывает дифракцию, т.е. отклоняется от прямолинейного направления. Если на пути лучей, распространяющихся от щелей решетки, поместить линзу, а в фокальной плоскости линзы экран, то на экране в одну точку соберутся все параллельные лучи, идущие под одним и тем же углом к нормали (рисунок 1). Лучи идущие под другим углом, соберутся в другой точке. Освещенность каждой точки экрана будет зависеть как от интенсивности света, даваемой каждой щелью в отдельности, так и от результата интерференции лучей, прошедших через разные щели Как видно из рисунка 1 разность хода лучей для двух соседних щелей

где d -период решетки, φ - угол отклонения лучей.

Рисунок 1

Если эта разность будет равна четному числу полуволн, в направлении угла φ будет наблюдаться максимум освещенности:

d sinφ = 2kλ/2 = kλ, (1)

а при условии

d sinφ = (2k+1)λ/2 (2)

наблюдается минимум.

Легко видеть, что при разности хода ∆=kλ все остальные щели будут по направлению угла φ также давать максимум, т.к. во всех случаях разности хода будут кратны. Эти максимумы называются основными.

Итак, при нормальном падении лучей на решетку для основных максимумов, полученных на экране от дифракционной решетки, имеем соотношение:

d sinφ = kλ, (3)

где k - 1,2,3 ,…целое число, называемое порядком спектра . Понятие порядок спектра связано с тем, что на экране наблюдается ряд максимумов, симметрично расположенных относительно белой полосы (спектр нулевого порядка), образованной светом, прошедшим через решетку без отклонения.

Из формулы (3) видно, что чем больше длина волны, тем большему углу дифракции соответствует положение максимума (рисунок 2). При падении на решетку монохроматического света на экране возникают одноцветные полосы. Формула (3) позволяет определить длину световой волны:

λ =d sinφ/k. (4)

Определение длины волны сводится к измерению угла φ. Для измерения углов служит специальный прибор гониометр (рисунок 3). Где К - каллиматор со щелью (для получения узкого пучка параллельных лучей); Т - зрительная труба; ОК – окуляр с нитью для наведения трубы на определенную линию спектра; С - круговая шкала с нониусом;

Рисунок 2

Др - дифракционная решетка.

Определение длины световой волны с помощью дифракционной решетки

1. ДИФРАКЦИЯ СВЕТА

Дифракция света – явление огибания светом встречающихся на его пути препятствий, сопровождающееся пространственным перераспределением энергии световой волны - интерференцией.

Расчет распределения интенсивности света в дифракционной картине может быть осуществлен с помощью принципа Гюйгенса - Френеля. Согласно этому принципу каждая точка фронта световой волны, т. е. поверхности, до которой распространился свет, является источником вторичных когерентных световых волн (начальные фазы их и частоты одинаковы); результирующее колебание в любой точке пространства обусловлено интерференцией всех вторичных волн, приходящих в эту точку, с учетом их амплитуд и фаз.

Положение фронта световой волны в любой момент времени определяет огибающая всех вторичных волн; любая деформация фронта волны (она обусловлена взаимодействием света с препятствиями) приводит к отклонению световой волны от первоначального направления распространения – свет проникает в область геометрической тени.

2. Дифракционная решетка

Прозрачная дифракционная решетка представляет собой стеклянную пластинку или целлулоидную пленку, на которой через строго определенные расстояния специальным резцом нарезаны узкие шероховатые бороздки (штрихи), не пропускающие света. Сумма ширины ненарушенного, прозрачного промежутка (щели) и ширины бороздки называется постоянной или периодом решетки.

Пусть на решетку падает плоская монохроматическая световая волна с длиной волны (рассмотрим самый простой случай - нормальное падение волны на решетку). Каждая точка прозрачных промежутков решетки, до которой дойдет волна, согласно принципу Гюйгенса становится источником вторичных волн. За решеткой эти волны распространяются по всем направлениям. Угол отклонения света от нормали к решетке называется углом дифракции.

Поместим на пути вторичных волн собирающую линзу. Она сфокусирует в соответствующем месте своей фокальной поверхности все вторичные волны, распространяющиеся под одним и тем же углом дифракции.

Для того, чтобы все эти волны при наложении максимально усиливали друг друга, необходимо, чтобы разность фаз волн, приходящих от соответствующих точек двух соседних щелей, т. е. точек, отстоящих на одинаковых расстояниях от краев этих щелей, была равна четному числу или разность хода этих волн была равна целому числу m длин волн . Из рис.1 видно, что разность хода волн 1 и 2

для точки P равна:

Следовательно, условие максимумов интенсивности результирующей световой волны при дифракции от дифракционной решетки можно записать следующим образом:

, (2)

где знак плюс соответствует положительной разности хода , минус - отрицательной.

Максимумы, удовлетворяющие условию (2), называются главными, число m называется порядком главных максимумов или порядком спектра. Значению m =0 соответствует максимум нулевого порядка (центральный максимум). Максимум нулевого порядка один, максимумов первого, второго и более высоких порядков - по два слева и справа от нулевого.

Положение главных максимумов зависит от длины световой волны. Поэтому при освещении решетки белым светом максимумы всех порядков, кроме нулевого, соответствующие разным длинам волн, смещаются друг относительно друга, т. е. разлагаются в спектр. Фиолетовая (коротковолновая) граница этого спектра обращена к центру дифракционной картины, красная (длинноволновая) - к периферии.

3. Описание установки

Работа проводится на спектрогониометре ГС-5 с установленной на нем дифракционной решеткой. Гониометр - прибор, предназначенный для точного измерения углов. Внешний вид спектрогониометра ГС-5 изображен на рис.2.

Рис.2

Коллиматор 1, снабженный регулируемой микрометрическим винтом 2 спектральной щелью, крепится на неподвижной стойке. Щель обращена к (ртутной лампе). На предметном столике 3 устанавливается прозрачная дифракционная решетка 4.

Наблюдение дифракционной картины производится через окуляр 5 зрительной трубы 6.

Целью работы является изучение дифракционной решетки, нахождение ее характеристик и определение с ее помощью длины световых волн спектра излучения паров ртути.

В лаборатории физического практикума кафедры физики УГТУ-УПИ в качестве источника линейчатого спектра в лабораторной работе № 29 используется ртутная лампа, в которой при электрическом разряде генерируется линейчатый спектр излучения, которое пройдя коллиматор спектрогониометра ГС-5 падает на дифракционную решетку (фотография ГС-5 приведена на титульном файле). Экспериментатор определяет угол дифракции с точностью до нескольких секунд, наводя визирную линию окуляра на соответствующую линию спектра, затем по вышеописанной методике вычисляет длину волны выбранной линии.

В компьютерном варианте данной работы достаточно точно моделируются условия проведения опытов. На экране дисплея воспроизводится окуляр, визирную линию которого следует наводить на любую выбранную спектральную линию, точнее говоря на середину цветовой полоски, что повышает точность измерения углов до нескольких угловых секунд.

Как и реальном спектре паров ртути, в компьютерной работе также “генерируются” четыре наиболее ярких видимых линий спектра: фиолетовая, зеленая и две желтых линии. Спектры расположены зеркально симметрично относительно центрального (белого) максимума. Внизу под окуляром для лучшей ориентации на тонкой черной полоске приведены все линии спектра ртути. Причем две желтые линии сливаются в одну. Дело в том, что эти линии расположены рядом и имеют близкие значения длин волн – так называемый дуплет, однако на хорошей дифракционной решетке они разделяются (разрешаются), что видно в окуляре. В данной работе одной из задач и является определение разрешающей способности дифракционной решетки.

Итак, наведя курсор на «Измерения» и нажав левую клавишу мышки, можно приступать к измерениям. «Вращать» окуляр можно в четырех различных режимах как влево, так и вправо, до тех пор, пока в поле зрения окуляра не покажется цветная вертикальная линия. Следует навести черную вертикальную визирную линию окуляра на центральную часть цветной полоски, при этом на цифровом табло высвечиваются значения угла дифракции с точностью до нескольких угловых секунд. Спектральные линии расположены примерно от 60 до 150 градусов. При этом от тщательности проведения опытов зависит точность числовых значений углов и, как следствие, правильность полученных результатов. Экспериментатору предоставляется возможность самому выбирать последовательность выполнения измерений

Результаты измерений надо занести в соответствующие таблицы отчета и произвести необходимые вычисления.

4.1.Определение длины волны спектральных линий паров ртути.

Измерения проводятся для линий спектра первого порядка (m=1). Постоянная решетки d=833,3 нм., ее длина (ширина) равна 40 мм. Значение синуса угла можно определить по соответствующим таблицам или с помощью калькулятора, однако следует иметь в виду, что угловые секунды и минуты нужно переводить в десятичные разряды градусов, т. е. 30 минут равны 0,5 градуса и т. п.

Результаты измерений заносятся в таблицу 2 отчета (смотри Приложение). Значение длины волны получают, используя формулу (2):

4.2.Расчет характеристик дифракционной решетки.

Максимальное значение порядка m дифракционных спектров для какой-либо дифракционной решетки может быть определено в случае нормального падения света на решетку по следующей формуле:

Значение m max определяется для наибольшей длины волны - в данной работе для второй желтой линии ж. Наивысший порядок спектров равен целой части (без округления!) отношения .

Разрешающая способность R дифракционной решетки характеризует ее способность разделять (разрешать) спектральные линии, мало отличающиеся по длинам волн. По определению

где - длина волны, вблизи которой производится измерение;

Минимальная разность длин волн двух спектральных линий, воспринимаемых в спектре раздельно.

Величина обычно определяется критерием Рэлея: две спектральные линии и считаются разрешенными, если максимум порядка m одной из них (с большей длиной волны), определяемый условием

,

совпадает с первым добавочным минимумом в спектре этого же порядка m для другой линии , определяемым условием:

.

Из этих уравнений следует, что

,

и разрешающая способность решетки оказывается равной

(6)

Таким образом, разрешающая способность решетки зависит от порядка m спектра и от общего числа N штрихов рабочей части решетки, т. е. той части, через которую проходит исследуемое излучение и от которой зависит результирующая дифракционная картина. По формуле (5) находится разрешающая сила R используемой дифракционной решетки для спектра первого порядка (m =1).

Из (5) следует, что две спектральные линии и разрешаются дифракционной решеткой в спектре m - го порядка, если:

. (7)

Используя найденное значение R , по формуле (5) вычисляется (в нанометрах) линейное разрешение спектральных линий вблизи линий ф, з,ж спектра

(9)

где - угловое расстояние между двумя спектральными линиями, отличающимися по длинам волн на .

Формула для D получается дифференцированием соотношения(2): левой части по углу дифракции , а правой - по длине волны :

,

(10)

Таким образом, угловая дисперсия решетки зависит от порядка m спектра, постоянной d решетки и от угла дифракции .

По формуле (8) находится (в “/нм- угловых секундах на нанометр) угловая дисперсия используемой дифракционной решетки для углов дифракции, соответствующих всем измеряемым длинам волн спектра.

Полученные результаты записываются в таблицу 2 отчета (смотри Приложение).

5. Kонтрольные вопросы

1. В чем состоит явление дифракции света?

2. Сформулируйте принцип Гюйгенса-Френеля.

3. Что такое разрешающая способность дифракционной решетки и от чего она зависит?

4. Как экспериментально определить угловую дисперсию D дифракционной решетки?

5. Какой вид имеет дифракционная картина, полученная от прозрачной решетки?

ПРИЛОЖЕНИЕ

ФОРМА ОТЧЕТА

Титульный лист:

У Г Т У - У П И

Кафедра физики

О Т Ч Е Т

по лабораторной работе 29

Изучение дифракционных решеток. Определение длины световой волны с помощью дифракционной решетки

Студент______________________________

Группа ______________________________

Дата _________________________________

Преподаватель……………………….

На внутренних страницах :

1. Расчетные формулы:

где - длина волны;

m – порядок спектра (m=1).

2. Источник излучения – ртутная лампа.

3. Ход лучей

4. Результаты измерений углов дифракции и длин волн

спектральных линий паров ртути. Таблица 1

Спектроальная линия

Порядок максимума, m

5. Расчет искомых величин.

Таблица 2 Xарактеристики дифракционной решетки

Период d

Наивысший

Порядок m

Спектров

Разрешающая

Линейное

Разрешение

Угловая дисперсия

D для линий

ртути, ”/ нм

6. Оценка погрешностей измерений длин волн рассчитывается по формуле:

Табличные значения длин волн спектральных линий паров ртути:

Фиолетовая – 436 нм,

Зеленая - 546 нм,

1 желтая – 577 нм,

2 желтая - 579 нм.

Национальный исследовательский университет «МЭИ»

(Московский энергетический институт)

Кафедра Физики им. В. А. Фабриканта

Лабораторная работа 3

по курсу «Общая физика»

Определение длины световой волны с помощью дифракционной решётки

Выполнил :

Студент 2-го курса

гр. ФМ-1-14

Навоев М. М.

Принял :

старший преподаватель

Бамбуркина И. А.

Москва 2015

Цель работы: наблюдение дифракционного спектра решетки, измерение длин световых волн, излучаемых спектральной лампой, и изучение спектроскопических характеристик дифракционной решетки.

1. Введение

Плоская прозрачная дифракционная решетка представляет собой систему равностоящих прозрачных узких щелей, разделенных непрозрачными полосками. Сумма ширины b щели и непрозрачной полосы a называется периодом решетки d (рис. 1).

Рис. 1 Рис. 2

Пусть на решетку перпендикулярно её поверхности падает плоская монохроматическая волна. После прохождения волной решетки изменяется направление распространения волны, происходит дифракция.

Дифракцию в параллельных лучах принято называть дифракцией Фраунгофера. Для выполнения условий формирования и наблюдения дифракционного спектра решетки используется следующая схема (рис. 2). Монохроматический свет от источника 1 освещает щель 2 , находящуюся в фокальной плоскости собирающей линзы 3 . После линзы 3 параллельный пучок света, падает на дифракционную решетку 4 . Световая волна дифрагирует при прохождении через решетку, образуя вторичные когерентные волны. Они собираются линзой 5 на экране в ее фокальной плоскости 6 .

Распределение интенсивности света в дифракционной картине получим, если учтем распределение интенсивности при дифракции на каждой щели и перераспределение энергии в пространстве из-за интерференции волн от всех щелей. При небольших углах дифракции расчет проще вести графическим методом сложения амплитуд.

Пусть на щель, длина которой l много больше ее ширины b (l >> b ) падает параллельный пучок света. Согласно принципу Гюйгенса-Френеля каждая точка волновой поверхности становится источником вторичных сферических волн, распространяющихся во все стороны под углами дифракции q. Эти волны когерентны и при наложении могут интерферировать. Разобьем открытую часть волнового фронта в плоскости щели на узкие полоски равной ширины, длиной l , параллельные краям щели (см. рис. 3). Каждая такая полоска будет играть роль вторичного источника волн. Так как площади полосок равны, то амплитуды колебаний ΔА i , идущих от этих источников будут равны между собой, равны также и начальные фазы этих волн, так как плоскость щели совпадает с волновой поверхностью падающей волны. В точку наблюдения колебания от каждой полоски придут с одинаковым по величине отставанием по фазе, которое, в свою очередь, зависит от угла дифракции q. Это отставание можно найти из соотношения (рис. 3).

Рис. 3 а б Рис. 4

Разность фаз лучей идущих от краев щели , где – геометрическая разность хода крайних лучей (рис. 3).

Чтобы найти результирующую амплитуду колебаний волн, приходящих в точку наблюдения P, поступим следующим образом. Амплитуду колебаний, посылаемых каждой полоской представим в виде вектора , отставание этих колебаний по фазе на величину g i , изобразим поворотом вектора против часовой стрелки. Тогда сумма векторов будет выглядеть в виде цепочки векторов, одинаковых по модулю и повернутых относительно друг друга на один и тот же угол g i (рис. 4). Результирующая амплитуда () – вектор , являющйся хордой дуги окружности радиуса R . Очевидно, что . Обозначим через A 0 длину дуги, состоящей из звеньев цепочки (). Так как , то . Из этих двух соотношений получим, что . Поскольку интенсивность света I ~ A 2 , то для распределения освещенности экрана получим формулу:

где . Нулевая освещенность (дифракционный минимум) будет наблюдаться в точках, где , т.е. при (При g = 0 все вектора выстраиваются вдоль прямой линии, и I = I 0 – нулевой максимум).

Отсюда получим условие для минимумов при дифракции света на одной щели:

, m = 1, 2, 3… (2)

График зависимости I от sin q показана на рис. 5.

В дифракционной решетке имеется N таких щелей (до тысячи и более). При падении света на решетку каждая из щелей даст в плоскости экрана картину, представленную на рис. 5.

При наложении эти картины пространственно совпадут, так как их пространственное положение определяется не тем, откуда вышли лучи, а тем, под каким углом q идут эти лучи (на рис. 2 видно, что лучи, вышедшие из разных щелей, но под одним и тем же углом q, попадут в одну точку на экране). Если бы волны, идущие от щелей, были не когерентны, то такое наложение привело бы к простому увеличению интенсивности света не экране в N раз по сравнению с освещенностью от одной щели. Но эти волны когерентны и это приводит к новому перераспределению энергии на экране, но уже в пределах каждого из максимумов от одной щели.

Для нахождения этого нового перераспределения энергии, рассмотрим лучи идущие от двух соответствующих точек соседних щелей, т.е. от точек лежащих на расстоянии d друг от друга (рис. 1). Разность хода D волн, идущих из этих точек под углом дифракции q, равна (рис 1).

Если выполняется условие интерференционного максимума – , то на экране в соответствующем месте будет расположена светлая полоса.

Таким образом, положение так называемых главных максимумов определяется формулой:

, n = 0, 1, 2, 3… (3)

Минимумы интенсивности при взаимной интерференции возникают в тех случаях, если разность фаз волн, идущих от соседних щелей, равна и т.д. Для этих углов дифракции цепочка векторов замыкается в окружность один раз (рис. 4а), два раза и т.д. и суммарный вектор . То есть этим углам дифракции соответствуют так называемые дополнительные минимумы , положение которых можно найти по формуле

, k = 1, 2, 3…, но k N , 2N , 3N … (4)

Таким образом, между главными максимумами располагается N – 1 дополнительный минимум. Между дополнительными минимумами располагаются слабые вторичные максимумы. Число этих максимумов, приходящихся на промежуток между соседними главными максимумами, равно N – 2.

Углам дифракции, в направлении которых ни одна из щелей не посылает свет, соответствуют главные минимумы , которые определяются формулой (2).

Результирующая картина распределения интенсивности света на экране с учетом формул (1), (2), (3) и (4) представлена на рис. 6. Здесь пунктирная линия повторяет распределение интенсивности при дифракции на одной щели.

При освещении решетки немонохроматическим светом дифракция сопровождается разложением света в спектр. Центральный максимум будет иметь тот же цвет, что и источник, так как при q = 0 световые волны любой длины имеют нулевую разность хода. Слева и справа от него будут располагаться максимумы для различных длин волн 1-го, 2-го и т.д. порядков, причем большей длине волны будет соответствовать больший угол дифракции q. Таким образом, дифракционная решетка может служить спектральным прибором (рис. 7). Основное назначение таких приборов – измерение длины волны исследуемого света.

2. Описание установки и метода измерений

Задача измерения длины волны с помощью решетки с известной постоянной d сводится к измерению углов q, под которыми наблюдаются дифракционные максимумы.

Оптическая схема установки приведена на рис. 8.

Источник света 1 освещает щель 2 , находящуюся в фокальной плоскости линзы 3 коллиматора. После коллиматора параллельный пучок света, падает по нормали на дифракционную решетку 4 , установленную на столике прибора. Дифрагированная световая волна попадает в объектив 5 зрительной трубы 6 и наблюдается в окуляр 7 .

Измерения углов дифракции производятся с помощью оптического прибора – гониометра (рис. 9).

Его основные части: зрительная труба 1 , ее окуляр 2 , винт фокусировки трубы 3 , отсчетный микроскоп 4 , столик 5 , коллиматор 6 , микрометрический винт коллиматора 7 , регулирующий размер щели коллиматора. Зрительная труба укреплена на вращающемся основании 8 .

Измерение углов, под которыми наблюдается дифракционный максимумы, производится с помощью отсчетного устройства. Величина угла q определяется по лимбу, который рассматривается через окуляр микроскопа 4 при включенном освещении. На поверхности стеклянного лимба нанесена шкала с делениями от 0° до 360°. Оцифровка делений произведена через 1°. Каждый градус разделен на три части. Следовательно, цена деления лимба равна 20". (При принятом способе измерения не используется обратное изображение и шкала в правом окне поля зрения отсчетного микроскопа.) Поле зрения отсчетного микроскопа изображено на рис. 10.

Отсчет производится следующим образом. В левом окне наблюдаются изображения диаметрально противоположных участков лимба и вертикальный индекс для отсчета градусов. Число градусов равно видимой ближайшей левой от вертикального индекса цифре на верхней шкале. Число минут определяется с точностью до 5" по положению вертикального индекса. Отсчет на рисунке примерно равен 0°15´.

3. Порядок выполнения работы

1. Включим источник света (спектральную лампу) перед щелью коллиматора. Лампа разгорается в течение 5-7 минут.

2. Ознакомимся с установкой и заполним таблицу спецификации измерительных приборов.

3. Поворачивая зрительную трубу, совместим перекрестие окуляра с изображением щели коллиматора. Изображение щели должно быть отчетливо видно и иметь ширину около 1 мм.

4. Вращением оправы окуляра трубы добьемся четкого изображения визирного креста в поле зрения окуляра.

5. Установим дифракционную решётку с известной постоянной на столике гониометра так, чтобы её плоскость была перпендикулярна оси коллиматора.

6. Включим освещение гониометра.

7. Поворачивая зрительную трубу влево и вправо, наблюдаем линии спектра лампы, располагающиеся симметрично от нулевого (неокрашенного) максимума. Зрительную трубу следует поворачивать медленно и плавно. Определим число видимых порядков спектра с каждой стороны от нулевого максимума. Одновременно проследим, чтобы отсчёт по шкале лимба при наблюдении линий спектра не выходил за пределы интервала углов от 20° до 270°. В противном случае освободим винт столика 5 и поворотом насадки с этим винтом вокруг вертикальной оси прибора введём требуемый участок лимба. После чего винт снова закрепим. Это даёт возможность не переходить через нуль шкалы лимба при измерениях и тем самым упрощает расчёты.

8. Произведем измерение углов, при которых наблюдаются различные линии в спектрах ±1, ±2, ±3 и т.д. порядков. Для этого к каждой линии слева и справа от центральной последовательно подведём перекрестие окуляра зрительной трубы. Отсчет производим по лимбу с помощью отсчётного микроскопа, как описано выше.

9. Данные измерений занесём в табл. 1. При измерениях через α обозначено угловое положение линий спектра справа от нулевого максимума, а через β – слева от нулевого максимума.

Таблица 1

Постоянная решетки d = 6,03*10 -5

4. Обработка результатов измерений

1. Рассчитайте угол дифракции q по формуле

2. Для каждого значения угла q найдём длину волны по формуле

(фиолетовый),

(зелёный).

3. Вычислим среднее значение длины волны для линии данного цвета. Результаты вычислений запишем в табл. 1.

4. Из формулы (6) выведем формулу для расчета погрешности Δλ и рассчитайте погрешность. Δα = Δβ = 5´.

5. Запишем окончательный результат


5. Дополнительное задание

Основными характеристиками спектрального прибора являются угловая дисперсия и разрешающая способность.

Определение угловой дисперсии

Угловая дисперсия – характеристика способности прибора пространственно разделять волны различной длины. Если две линии отличаются по длине волны на δλ и им соответствует разность углов δq, то мерой угловой дисперсии служит величина .

Пусть имеются две близкие спектральные линии с длинами волн λ 1 и λ 2 . Расстояние между максимумами δq для длин волн λ 1 и λ 2 находится из условия главных максимумов интенсивности. После дифференцирования в формуле (3) имеем: d ·cos (q)·δq = n δλ. Откуда

Проведём измерения угловых расстояний для желтого дублета во всех видимых порядках спектра.

Зная разность δλ = λ 1 – λ 2 , вычислим угловую дисперсию дифракционной решетки в спектре 1-го и 2-го порядков (или других порядков). Размерность D – мин/нм.

Полученный результат сравним с теоретическим (формула 7).


В ходе лабораторной работы были произведены замеры двух световых волн. Было установлено, что они соответствуют табличным значениям.

Дифракция света заключается в отклонении световых лучей от прямолинейного пути в случае прохождения их через малые отверстия или мимо малого непрозрачного экрана.

Дифракция обычно наблюдается, если размеры отверстия или препятствия одного порядка с длиной волны.

При расчетах дифракционных явлений пользуются особым приемом, который предложил Френель, называемый принципом Гюйгенса – Френеля и являющийся развитием принципа Гюйгенса.

Принцип Гюйгенса формулируется так: каждая точка волновой поверхности световых волн является источником вторичных волн. Огибающая поверхность вторичных волн будет новым положением волновой поверхности.

Принцип Гюйгенса решает задачу о распространении волнового фронта, но не решает задачу об интенсивности волн, которые идут в различных направлениях от источника.

Принцип Гюйгенса-Френеля рассматривает интенсивность результирующей волны как результат интерференции вторичных волн, являющихся когерентными, поскольку зарождаются на одном и том же фронте волны.

α 1
α 2
R

Рис . 3.5.2.

Интерференция вторичных волн, по Френелю, происходит следующим образом: пусть из точки S распространяется сферическая волна радиуса R . Выберем на этой поверхности элементарные площадки dS одинакового размера. Все они являются когерентными источниками и нормаль к каждой из них образует различные углы a с лучом, идущим в точку B перед фронтом волны.

Рис . 3.5.3.

Для упрощения расчета интенсивности света в точке B Френель предложил метод, получивший название метода зон Френеля.

Разобьем весь фронт волны на зоны, расстояние от которых до точки B отличается на . Опишем их из точки B , как из центра, окружностями с радиусами

.

Рис . 3.5.4.

Площади зон можно считать одинаковыми, а значения амплитуд световой волны, приходящей в точку B от каждой последующей зоны, постепенно убывают. Ясно, что от двух соседних зон волны приходят в точку B в противофазе.

Метод зон Френеля позволяет объяснить различные случаи дифракции. Рассмотрим некоторые из них, а именно:

дифракцию Френеля или дифракцию в сходящихся лучах, когда на отверстие или препятствие падает сферический фронт волны, и

дифракцию Фраунгофера , или дифракцию в параллельных лучах – на отверстие падает плоский фронт волны.



Примером первого вида дифракции (дифракции Френеля) может быть дифракция на круглом отверстии.

Если в отверстии умещается четное число зон Френеля, то волны приходящие в точку B от соседних зон гасят друг друга, и в точке B будет наблюдаться минимум освещенности. Если в отверстии умещается нечетное число зон, то одна из зон останется нескомпенсированной и в точке B наблюдается максимум интенсивности света. При смещении на экране в различных направлениях от точки B отверстие будет вырезать то четное, то нечетное число зон Френеля. Благодаря этому на экране мы увидим дифракционную картину от круглого отверстия в виде светлых и темных колец.

Примером второго вида дифракции (дифракции Фраунгофера) является дифракция параллельных лучей на одной щели. Щелью называют длинное и узкое отверстие в непрозрачном экране со строго параллельными краями, ширина которого значительно меньше длины.

Рис. 3.5.5.

Свет падает параллельным пучком перпендикулярно ще­ли, так что колебания всех точек щели совершаются в одинаковой фазе. Лучи, дифрагирующие под углом j, будут собраны линзой в точке B экрана и интерферируют.

При j = 0 все волны придут в точку О в одинаковой фазе и усилят друг друга; на экране появится светлая полоса – центральный максимум .

Чтобы определить результат интерференции в точке B при j ¹ 0 , разобьем открытый участок волновой поверхности (ширину щели) на ряд зон Френеля. В данном случае они представляют собой узкие полоски, параллельные краям щели. Проведем через точку А плоскость АD , перпендикулярную пучку дифрагирующих лучей. Оптические пути лучей от АD до точки B одинаковы, поэтому разность хода СD крайних лучей равна:

D = а sin j. (3.5.1)

Зоны Френеля делят D на соответствующее число участков. Каждой точке в нечетной зоне Френеля соответствует точка в четной зоне, колебания которой приходят в точку B в противофазе. Следовательно, в точке B , для которой в ширине щели укладывается четное число зон Френеля, волны гасят друг друга и на экране в этом месте будет темная полоса.



Т.о., условием минимума для одной щели будет:

, , (3.5.2)

В тех направлениях, для которых на ширине щели умещается нечетное число зон, будет наблюдаться наибольшая интенсивность света. Т.е., дифракционные максимумы наблюдаются в направлениях, определяемых условием:

, ,… (3.5.3)

k – порядок дифракционного максимума.

Распределение интенсивности света при дифракции на одной щели показано на рис. 3.5.5.

Итак, при освещении щели монохроматическим светом дифракционная картина представляет собой систему максимумов, симметричных относительно середины центрального максимума с быстрым убыванием интенсивности.

В случае освещения щели белым светом центральный максимум будет общим для всех длин волны, поэтому центр дифракционной картины – белая полоса.

Максимумы остальных порядков для разных длин волн уже не совпадают. Благодаря этому максимумы настолько расплывчаты, что сколько-нибудь отчетливого разделения длин волн (спектрального разложения) при помощи одной щели получить нельзя.

Рассмотрим более сложную дифракцию от двух щелей. В точке О по-прежнему будет светлая полоса (лучи от всех щелей приходят в одинаковой фазе).

В точке B на дифракционную картину от одной щели будет накладываться интерференция лучей, идущих от соответственных точек двух щелей. Минимумы будут на прежних местах, ибо те направления, по которым ни одна щель не посылает света, не получает его и при двух щелях.

Рис. 3.5.6.

Кроме этих минимумов возникают дополнительные минимумы в тех направлениях, в которых свет, посылаемый каждой из щелей, взаимно уничтожается. Из рис. 3.5.6 видно, что разность хода лучей D, идущих от соответствующих точек щелей, равна

. (3.5.4)

Дополнительные минимумы поэтому определяются условием:

; (3.5.5)

Наоборот, в направлениях, где

, (3.5.6)

наблюдаются максимумы.

Из рис. 3.5.6 видно, что между двумя главными максимумами располагается один дополнительный минимум.

Итак, рассмотрение дифракции на двух щелях показывает, что в этом случае максимумы становятся более узкими и интенсивными.

Увеличение числа щелей делает это явление еще более отчетливым; интенсивность главных максимумов растет, а интенсивность побочных – падает.

К= -2
К= -1
К= 0
К= 1
Систему большого числа параллельных щелей называют дифракционной решеткой .

Рис. 3.5.7.

Простейшая дифракционная решетка – это стеклянная пластинка, на которой с помощью делительной машины нанесены параллельные штрихи, непрозрачные для света.

Дифракционная картина от монохроматического света, прошедшего дифракционную решетку, наблюдается в фокальной плоскости линзы и представляет собой ряд светлых узких полос убывающей интенсивности, расположенных по обе стороны от центрального максимума k = 0 и разделенных широкими темными промежутками.

В случае если решетка освещена белым светом, лучи с различной длиной волны собираются в разных местах экрана. Поэтому центральный максимум имеет вид белой полосы, а остальные представляют собой окрашенные полоски, называемые дифракционными максимумами.

Рис. 3.5.8.

В пределах каждого спектра окраска меняется от фиолетовой до красной. По мере увеличения порядка спектра последний становится шире, но интенсивность его уменьшается.

Соотношение, определяющее положения главных максимумов

, (3.5.7)

где d – постоянная решетки, – порядок максимума (спектра), называется формулой дифракционной решетки .

Эта формула позволяет определить длину световой волны по известному периоду решетки d , порядку спектра и экспериментальному углу j . Следовательно, с помощью дифракционной решетки можно разлагать свет на составные части и определять состав исследуемого излучения (определять длину волны и интенсивность всех его компонентов). Применяемые для этого приборы называются дифракционными спектрографами.

Описание оборудования

Приборы и принадлежности : осветитель, дифракционная решетка, экран с миллиметровым масштабом, измерительная линейка.

Рис. 3.5.9.

Для определения длины волны света с помощью дифракционной решетки на специальной рейке укрепляется решетка P и щель; штрихи решетки и щель располагаются параллельно. Щель освещается источником S . Перпендикулярно к оси рейки укрепляется миллиметровая линейка AB с подвижным указателем. Щель рассматривается через решетку глазом. На линейку проектируется изображение главных максимумов. На рис. 8 L – расстояние от дифракционной решетки до экрана, х расстояние между серединами полос одного и того же цвета для спектров первого и второго порядка.

Порядок работы

1. Включить осветитель в сеть.

2. Установить экран на заданном расстоянии L от дифракционной решетки.

3. Замерить расстояние x между полосами заданного цвета в спектре первого порядка x 1 и второго порядка x 2 . Проделать аналогичные измерения и вычисления для другого заданного цвета.

Обработка результатов

Для определения длины волны l по формуле (3.5.7)

необходимо учесть, что поскольку L >> х , то и тогда

и , (3.5.8)

где k – порядок спектра, а постоянная решетки d = 0,01 мм. Вычислить среднее значение длины волны каждого цвета из двух значений, полученных из спектров первого и второго порядков. Сравнить полученные результаты с табличными значениями.

Контрольные вопросы

1. Что такое дифракция света?

2. В чем состоит метод Гюйгенса – Френеля и что такое зоны Френеля?

3. Как происходит дифракция в сходящихся лучах?

4. Как происходит дифракция в параллельных лучах (на одной щели)?

5. Почему нулевой максимум имеет наибольшую яркость? Почему он белый (при освещении белым светом)?

6. Как происходит дифракция в параллельных лучах на двух щелях?

7. Что такое дифракционная решетка и постоянная дифракционной решетки?

8. Какова причина возникновения дисперсии (спектра) света при использовании дифракционной решетки?

9. Выведите рабочую формулу.

Литература

1. Савельев И.В. Курс общей физики. Т.2.Учеб. пособие для студентов втузов. – М.: КНОРУС, 2009, 576 с.

2. Трофимова Т.И. Курс физики. Учеб. пособ. для вузов.- 15-е изд., стереотип. – М.: Издательский центр «Академия», 2007. – 560 с.

3. Детлаф А.А., Яворский Б.М. Курс физики. Учеб пособие для втузов. – М: Высш. Шк., 1989. – 608 с.

ЛАБОРАТОРНАЯ РАБОТА № 3.6

ИЗУЧЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА

Цель работы: экспериментальная проверка закона Малюса.

Теоретические положения

Поляризация света

Как известно, свет представляет собой электромагнитные волны. Векторы напряженности электрического и магнитного поля ( и ) в каждый момент времени взаимно перпендикулярны и лежат в плоскости, перпендикулярной к направлению распространения волны (рис. 3.6.1).

Рис. 3.6.1.

Обычные источники света являются совокупностью огромного числа быстро высвечивающихся, за время около 10 -7 – 10 -8 секунд, элементарных источников (атомов и молекул), каждый из которых испускает волны с определенной ориентацией векторов и . Но элементарные источники испускают свет совершенно независимо друг от друга с разными фазами и с разной ориентацией векторов и .

Световая волна с различной ориентацией , а, следовательно, и , называетсяестественным светом .

Векторы и в каждой точке волны пропорциональны по величине друг другу, поэтому состояние световой волны можно характеризовать значением одного из этих векторов, а именно .

Последнее целесообразно, поскольку именно вектор определяет фотоэлектрическое, фотографическое, зрительное и т. д. действия света.

Рис. 3.6.2.

В естественном луче колебания вектора беспорядочно меняют направления, оставаясь в плоскости, перпендикулярной лучу (рис. 3.6.2 а ).

Если какое – либо направление колебаний является преимущественным, то свет называется частично-поляризованным (рис. 3.6.2 б ).

Если колебания вектора могут совершаться лишь в одном определенном направлении в пространстве, то свет называется плоскополяризованным (рис. 3.6.2 в ).

Если же в плоскополяризованном луче колебания вектора совершаются так, что его конец описывает круг, то свет называется поляризованным по кругу (рис. 3.6.2 г ).

В плоскополяризованном луче плоскость колебаний вектора называется плоскостью колебаний.

Плоскость, проходящая через луч и вектор , называется плоскостью поляризации.